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Abstract

Bias analysis is a crucial step in the process of creat-
ing fair datasets for training and evaluating computer vi-
sion models. The bottleneck in dataset analysis is annota-
tion, which typically requires: (1) specifying a list of at-
tributes relevant to the dataset domain, and (2) classify-
ing each image-attribute pair. While the second step has
made rapid progress in automation, the first has remained
human-centered, requiring an experimenter to compile lists
of in-domain attributes. However, an experimenter may
have limited foresight leading to annotation “blind spots,”
which in turn can lead to flawed downstream dataset anal-
yses. To combat this, we propose GELDA, a nearly auto-
matic framework that leverages large generative language
models (LLMs) to propose and label various attributes for a
domain. GELDA takes a user-defined domain caption (e.g.,
“a photo of a bird,” “a photo of a living room”) and uses
an LLM to hierarchically generate attributes. In addition,
GELDA uses the LLM to decide which of a set of vision-
language models (VLMs) to use to classify each attribute
in images. Results on real datasets show that GELDA can
generate accurate and diverse visual attribute suggestions,
and uncover biases such as confounding between class la-
bels and background features. Results on synthetic datasets
demonstrate that GELDA can be used to evaluate the biases
of text-to-image diffusion models and generative adversar-
ial networks. Overall, we show that while GELDA is not
accurate enough to replace human annotators, it can serve
as a complementary tool to help humans analyze datasets
in a cheap, low-effort, and flexible manner.

1. Introduction

Dataset bias analysis is a crucial step in the machine
learning model development process and typically occurs
when certain attribute combinations are over- or under-
represented. Dataset bias virtually always exists in ob-
servational data sampled “from-the-wild.” For example,

the popular face dataset CelebA has a low percentage of
dark-skinned faces, and a significantly higher fraction of
young women compared to young men [5], ImageNet is
known to have inequalities of visual concepts across its
1000 classes [51], and public chest radiograph datasets are
surprisingly predictive of race [13]. Measuring dataset bias
is the first step towards mitigating bias, which is impor-
tant for two reasons. First, machine learning models can
inherit biases from training data [16, 38, 55], resulting in
potentially unfair behavior when deployed. Second, eval-
uation data with spurious correlations between visual at-
tributes (e.g., age with gender in CelebA) prevent experi-
menters from causally linking model performance to spe-
cific visual phenomena [5].

Sampling biases may be measured by annotating each
image in a dataset with a list of labels, and computing
frequency statistics over these labels. The typical annota-
tion workflow involves two steps: (1) compiling a list of
attributes to annotate, and (2) annotating those attributes
for each example. In the first step, a human dataset de-
signer/engineer typically decides upon a set of key at-
tributes keeping in mind specific downstream use cases of
the dataset. For example, face images may be labeled with
various attributes that are key for face analysis systems,
such as facial expression, skin tone, or perceived age. In
the second step, the designer may employ crowdsourced
annotators or automated algorithms to annotate the pres-
ence/absence of each attribute in each image.

While the second step (annotation) is clearly moving
rapidly towards automation with the various advances in ob-
ject recognition and foundation models [19, 26, 54], the first
step (attribute selection) remains largely human-centered.
This raises a subtle issue: the process is only as good as the
attributes decided upon by human experimenters, which can
leave attribute blind spots that they might not even foresee.
For example, while species, color, and size may be anno-
tated for birds in CUB-200 [46], backgrounds and perch-
ing behavior are not, though they clearly have imbalances
(as we show in our experiments, see Table 2 and Fig. 4).
While there is no substitute for human ground truth, an an-
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notation method that trades off accuracy for flexibility and
automation would enable practitioners to quickly and effort-
lessly gather insights about their dataset. We propose such
a method.

The key insight behind our method, called GELDA (for
GEnerative Language-based Dataset Annotation), is that
generative large language models (LLMs) like GPT [9, 35]
capture a significant amount of world knowledge [36] and
can serve as priors [52] for linking domains to their related
attributes. In addition, recent work has demonstrated the
effectiveness of using LLMs to select downstream models
for given tasks [14]. Therefore, we posit that LLMs may be
used to automatically curate a rich set of relevant, domain-
specific attributes and select vision models suited to the
“type” of each attribute (for example, attributes related to
objects are suited for object detectors, whereas holistic im-
age attributes, like “color scheme” or “style”, are suited for
image-text matching models).

Provided a user-specified domain, GELDA queries an
LLM (GPT in our experiments) for semantic categories
(e.g., living room furniture and color scheme) and attributes
per category (e.g., couch and coffee table for the furniture
category) that can visually distinguish images from that do-
main. Second, we use vision-language models (VLMs) to
annotate the generated attributes for the images conditioned
on the attribute labels. We use a zero-shot captioning model
to annotate attributes related to image-level concepts (e.g.,
background setting, style), and a text-guided object ground-
ing algorithm to annotate attributes related to object-level
concepts (e.g., object and part detection). GELDA is auto-
matic with the exception of a few low-cost user inputs (e.g.,
domain caption, number of desired categories/attributes).

We evaluate our work with both popular computer vi-
sion datasets and synthetic image data produced by state-
of-the-art text-to-image models (Stable Diffusion [37]) and
generative adversarial networks (StyleGAN2 [18]). First,
we demonstrate that GPT is capable of recovering a high
percentage of labels already annotated in several vision
datasets, while also suggesting other relevant concepts.
Second, we demonstrate that GELDA can discover previ-
ously known and unknown biases in real datasets. Examples
include waterbird species in CUB-200 [46] appearing more
often in “coastal” or “wetland” backgrounds than land habi-
tats, and luxury brands in Stanford Cars [24] appearing less
often in “parking lots” or “gas stations” compared to other
brands. Third, we use GELDA to show that living rooms
generated by Stable Diffusion almost always have neutral
or monochromatic color schemes and contain coffee tables,
sofas, area rugs, and throw pillows, and that StyleGAN2
amplifies biases from its training set. Finally, we present
some of GELDA’s limitations and draw conclusions regard-
ing the safe use of this new data analysis framework.

2. Related Works

2.1. Dataset bias measurement in computer vision

Computer vision datasets are known to have biases [38,
44, 45, 47, 48, 51], and human-related domains such as
faces are particularly scrutinized [2, 11, 20, 22, 23, 33] be-
cause models trained on these data can inherit biases along
attributes like race and gender that are protected by the
law [21, 40, 57]. Biased benchmarking data can inhibit
causal analysis of algorithmic performance due to specific
visual factors, due to confounding variables [5, 28]. Ap-
proaches to mitigating dataset bias include collecting more
thorough examples [33], using image synthesis to fill distri-
bution gaps [23, 40], and resampling [27].

Our work is most closely related to and inspired by
REVISE [48], a recent dataset bias analysis tool that also
computes visual attribute frequencies. The main distinc-
tion between REVISE and GELDA is that REVISE relies
on ground truth dataset annotations and focuses on three
axes of analysis (object, person, and geography) on natural
scenes, while GELDA uses LLM/VLMs to generate and la-
bel attributes, and is best suited for closed domain datasets.
As a consequence, GELDA sacrifices some accuracy for
flexibility and automation.

Several other tools have also been developed to diagnose
the weaknesses of machine learning models such as object
detectors and action recognizers [3, 15, 43]. Facebook’s
Fairness Flow [1] and IBM’s AI Fairness 360 [6] focus
on assessing machine learning model biases as opposed to
dataset biases. Amazon SageMaker Clarify [4] also works
to detect bias in training data, but along predefined axes.
Google’s Know Your Data [41] also aims to help mitigate
bias issues in image datasets, but their tool currently only
works on TensorFlow image datasets. In contrast, GELDA
uses LLMs and VLMs to automatically generate annota-
tions for any dataset from a specific domain.

2.2. Foundation models and zero-shot learning

Foundation models are large-scale machine learning mod-
els pre-trained on vast amounts of data to learn general pat-
terns [7, 54]. These models serve as fundamental build-
ing blocks for various AI applications. Large language
models (LLMs), like GPT-3 [9] and its successors [35],
have made significant advancements in natural language
understanding and generation. They are widely used in
various applications, including chatbots, content genera-
tion, and language translation. Vision-language models
(VLMs), trained on large-scale multimodal datasets, have
been shown to perform strongly on downstream tasks such
as zero-shot classification, image captioning, and object de-
tection [26, 34, 39, 49, 53]. Recent works demonstrate
the power of combining multiple foundation models to per-
form tasks. Several works have shown improved classi-
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Figure 1. Overview of GELDA. Given a user-specified domain in the form of a caption, GELDA first queries an LLM to generate a set
of visual attributes to annotate for an image dataset from that domain. The querying method is hierarchical, in that GELDA prompts the
LLM to first generate N attribute categories, then generate M labels per attribute category, and finally describe whether each attribute is
object-level or image-level. In the second stage, GELDA uses pre-trained VLMs to automatically annotate the generated attributes for each
image. We use the LLM to assign all image-level attributes to a VLM tuned for image-text matching, and all object-level attributes to a
VLM for open-vocabulary object detection. Once GELDA has identified and annotated visual attributes, we can then analyze visual biases
in the dataset.

fication performance by first prompting LLMs to gener-
ate class-specific text descriptions and then using a VLM
to combine images and the generated text for classifica-
tion [25, 32, 52, 56]. Another work shows that LLMs can
be used to augment text in image-text datasets to assist in
zero-shot classification [12]. GELDA uses a foundation
model composition, but for a new purpose: identifying and
labeling domain-specific attributes in image datasets using
LLMs and VLMs for bias analysis.

3. Methods
Our goal is to take a user-specified domain along with a
set of images S from that domain, and automatically pro-
duce attribute annotations for each image in S from a vari-
ety of in-domain categories. Using these attributes, we can
then perform bias analyses of S. There are two key chal-
lenges to this task: (1) automatically obtaining a list of rele-
vant categories and attributes for the specified domain, and
(2) automatically choosing the appropriate model for eval-
uating each image-attribute pair. We propose a framework
(see Fig. 1) that addresses both of these challenges.

Our insight for the first challenge is that large language
models (LLMs) are adept at linking concepts to one an-
other [36, 52]. We therefore query an LLM for a list of do-
main categories along with their associated attributes with
careful prompting. To address the second challenge, we ob-
serve that vision-language models (VLMs) offer a powerful
means of performing such evaluations like zero-shot image

classification [39] and object grounding [34] from text in-
put alone. The key challenge is determining which VLM to
use for a given attribute. Certain image-level attributes like
style or color scheme are better suited for image-text match-
ing (ITM) models, whereas determining the presence of an
object like a couch is better suited for open-vocabulary ob-
ject detectors (OVODs). We again use the LLM, this time to
provide a decision into the attribute type, and automatically
choose the appropriate VLM based on a pre-specified list
of VLMs for each attribute type. We describe our method
further in the following sections.

3.1. Attribute generation with an LLM

We use an LLM to generate attributes in a hierarchical fash-
ion by querying the LLM for categories, followed by query-
ing attribute examples per category. We use this hierarchi-
cal form for several reasons. First, we empirically find that
querying the LLM directly for attributes results in poor cov-
erage of visual concepts. Second, breaking up the predic-
tion as a “chain” is known to be a successful strategy for
controlling LLMs towards more human-like reasoning [50].
Third, this approach allows the user control over the num-
ber of categories and attributes per category that they desire.
First, the user provides a prompt query Q1 of the form:

Q1 : “What are N attribute categories that can be
used to visually distinguish images described by
the caption caption?”,

where N is a number chosen by the user and caption is
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a word or phrase describing the data domain (e.g., “birds”
or “a headshot photo of a person”). Second, for each of
the categories {category1, ..., categoryN} re-
turned by Q1, we obtain attribute labels with query Q2:

Q2 : “What are M different examples of the cat-
egory category that can be used to distinguish
images described by the caption caption?”,

where M is again chosen by the user. Lastly, we determine
whether each of the N attribute categories relates to image-
level or object-level concepts with query Q3:

Q3: “Are {att1, ..., attM} examples of
objects or items? Answer with a yes or no. Ex-
plain your answer.”,

where {att1, att2, ...attM} is the list of M gen-
erated attributes for a category. We require a binary yes or
no answer in order to automatically filter the response into
one of the two appropriate downstream models. Requiring
an explanation pushes the model to provide more accurate
answers, as demonstrated in prior work [50].

Dealing with stochasticity: Auto-regressive LLMs are
stochastic in that they can produce different outputs given
the same prompt. While stochasticity helps capture the full
output distribution, determinism is helpful for reproducibil-
ity. To obtain high-quality attribute labels that are mostly
consistent across experiments, we perform the queries in
the previous section several times per prompt, and pick the
N and M most frequently labeled categories and attributes.

3.2. Zero-shot annotation with VLMs

We assume access to pretrained VLMs that take input im-
ages and text captions and can perform annotation. In our
experiments, we use two VLMs – one for image-text match-
ing (ITM) and one for open-vocabulary object detection
(OVOD). To convert LLM-generated attributes into input
captions for the VLMs, we define a set of prompt templates
that correspond to noun-attribute relationship phrases, e.g.,
“a noun has attribute” and “a attribute noun.”
We let the user assign the correct noun-attribute relation-
ship phrase for each of the N categories, though this can
likely also be automated by the LLM in future work.

OVOD models output bounding boxes and detection
scores, allowing us to label an attribute if its detection score
is simply above a threshold α. Output values of current ITM
models are less predictable because they are trained with a
hard negative mining strategy [26], making it difficult to set
a constant threshold. Instead, we compute ITM scores for
the M attribute text captions and a generic “base” refer-
ence caption describing the domain (same as the one used
in query Q1, see Sec. 3.1). Finally, we select the highest-
scoring caption among the M attributes, and label that at-
tribute as present if it is greater than the base caption score.
This process essentially performs multiclass classification.

Figure 2. Analysis of GPT attribute generation performance
on three real datasets. We plot the fraction of significant attribute
dimensions (the fraction of principal components that explain 95%
of the cumulative variance) versus recall (fraction of real dataset
attributes that match with a generated attribute, see Eqn. 1). We
plot separate curves for each number of generated categories (N
in Sec. 3.1) queried by GPT, and each dot represents a different
number of queried attributes per category (M ).

4. Experiments and Results

We evaluate GELDA in several ways. Sec. 4.1 and Sec. 4.2
quantitatively analyze the performances of the LLM and
VLM components. Sec. 4.3 demonstrates visual biases dis-
covered by GELDA in real datasets, and Sec. 4.4 demon-
strates biases discovered in deep generative model outputs.
We use the following publicly available models: GPT-3.5
for chat completion, BLIP for ITM, and OWLv2 for OVOD
using a threshold of α = 0.3.

Datasets: We used 7 real and synthetic datasets span-
ning a range of domains to show the generality of our
method. We use the test sets of four popular real im-
age datasets: (1) DeepFashion (clothing items) [31], (2)
CelebA (human faces) [30], (3) CUB-200 (birds) [46], and
(4) Stanford Cars (cars) [24]. We use the public Stable Dif-
fusion XL model [37] to generate (5) SD Living Rooms,
consisting of 1,024 synthetic images using the caption “a
photo of a living room.” We use the public StyleGAN2
(SG2) models [18] on the FFHQ [17] and AFHQ [10]
datasets to generate 10,000 images each of (6) SG2 Faces
and (7) SG2 Dogs (with truncation ψ = 0.7 [8]).

4.1. Analysis of attribute generation (LLM)

GPT-3.5 virtually always generates attributes relevant (i.e.,
related in some manner) to a given data domain (see Supple-
mentary for a list of generated attributes per domain). How-
ever, simply generating a huge number of attributes (large
M and N ) is a poor strategy for several reasons. First, dur-
ing data analysis, we want a compact set of features to avoid
multi-hypothesis testing. Second, each new added attribute
will eventually yield marginal information gain, leading to
many redundant attributes. Third, though relatively minor,
there is a cost (monetary and time) associated with each
query to GPT-3.5 ($0.0020/1K output tokens, average re-
sponse time of ∼30 seconds/1K output tokens).

With this in mind, we first explore the quality of the at-
tributes generated by GPT with varying values to M and
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Table 1. VLM performances on ground-truth attribute labels
from real datasets. Numbers are average AUC scores across all
attributes in each dataset. BLIP achieves good performance across
all three datasets, and consistently outperforms OWLv2 likely due
to more image-level attributes being labeled.

Model
Dataset

DeepFashion CelebA CUB-200

BLIP 0.78 0.74 0.70
OWLv2 0.65 0.71 0.67

N . We consider two figures of merit: recall and effective
attribute dimension. Recall is the fraction of real labels
that are annotated by GPT, measuring the ability to recover
known relevant attributes. We estimate it as:

Recall =
1

|AR|

( ∑
ar∈AR

max
ag∈AG

cos
(
T (ar), T (ag)

)
> β

)
,

(1)
where AR is the set of the real dataset attributes, AG is the
set of generated attributes, T (·) is a text embedding func-
tion, cos(·, ·) is the cosine similarity between two vectors,
and β is a threshold for defining a match in similarity. For
our experiments, we set β = 0.8. We define effective at-
tribute dimension as the number of principal components
needed to capture 95% of the variance in the embedding
space spanned by a set of attributes, {T (ag)}ag∈AG

, which
intuitively captures the fraction of meaningful attribute di-
mensions in the set.

We present analyses in Fig. 2 for the three real datasets
with rich attribute labels: DeepFashion, CelebA, and
CUB-200. We swept N in {3, 5, 10, 15, 20} and M in
{3, 5, 7, 10, 15, 20}. As expected, increasing N and M
increases recall and decreases the fraction of effective at-
tributes. For DeepFashion and CelebA with N ≥ 10,
increasing M leads to minimal gains to recall and large
dropoffs in the fraction of effective attributes, indicating
that GPT starts to generate redundant attributes. For CUB-
200, increasing both N and M results in large increases
in recall. However, for large N , increases in M result in
sharper decreases in the fraction of effective attributes. For
all datasets, N = 10 categories and M = 5 attributes
provide a good balance between few attributes and concept
coverage. We use these values in subsequent experiments.

4.2. Analysis of attribute annotation (VLMs)

Next, we evaluate the performance of BLIP and OWLv2
for annotation. We use the same three real datasets from
the previous section (DeepFashion, CelebA, and CUB-200)
because they each have ground-truth annotations for many
attributes. We predict labels within each category in a mul-
tilabel classification scheme. Table 1 presents the aver-
age AUC across all dataset attributes for each VLM. BLIP
shows good performance (AUC > 0.7) across all datasets

Figure 3. Human evaluation of BLIP (VLM) for image-level
annotations. We selected one category each from four datasets
for human annotation. We find that BLIP annotations match with
humans for backgrounds seen in CUB-200 and Stanford Cars.
However, BLIP annotations of DeepFashion style and SD Living
Rooms color schemes match less strongly. Counts are normalized
over rows (i.e., total human annotations) to yield percentages.

and generally outperforms OWLv2 likely due to the larger
fraction of image-level attributes labeled in the datasets.

We also evaluated BLIP’s performance on image-level
attributes using human annotators. We selected one GPT-
generated category (not already labeled) from each of four
datasets: “style” for DeepFashion, “habitat” for CUB-200,
“location” for Stanford Cars, and “color scheme” for SD
Living Rooms. We collected human annotations on a sub-
set of each dataset (200-400 images per dataset, 1-3 annota-
tions per image) using 12 unique annotators. Fig. 3 presents
confusion matrices reporting the agreement level between
human and VLM annotations. There is good agreement be-
tween humans and BLIP on background scenery (i.e., bird
habitat and car location). However, for DeepFashion there
is confusion between pairs of styles (“bohemian” vs. “vin-
tage” and “formal” vs. “minimalist”) and for color schemes
in SD Living Rooms. We provide visual examples of dis-
agreements between humans and VLMs in Supplementary,
as well as inter-annotator disagreements.

4.3. Discovering biases in real datasets

We next demonstrate using GELDA to reveal biases in real
datasets: DeepFashion, CUB-200, and Stanford Cars. We
show a few example attributes with annotations in the top
row of Fig. 5. We provide full lists of generated categories
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Table 2. Categories generated by GELDA along with their associated attributes with the highest frequencies for various datasets.
Category corresponds with attributes determined to be object-level, and the majority attribute names have been shortened for brevity.
Across all three datasets, several categories contain attributes with frequencies over 30%, which may be cause for concern. More detailed
breakdowns for each dataset are shown in Supplementary.

DeepFashion
”a photo of a clothing item”

Category Majority
Attribute

Majority
Proportion (%)

Material Cotton 23.0%
Fit Loose 42.0%
Style Minimalist 35.3%
Pattern Floral 4.3%
Sleeve length Sleeveless 30.5%
Color Black 12.2%
Embellishments Lace 11.5%
Neckline Boat 28.1%
Brand/logo Nike 0.7%
Type Dress 46.2%

CUB-200
”a photo of a bird”

Category Majority
Attribute

Majority
Proportion (%)

Habitat Forest 12.5%
Plumage pattern Solid 37.7%
Color Yellow 11.7%
Size Tiny 50.8%
Wing shape Slender 10.0%
Species Sparrow 29.5%
Perching behavior Tree branch 37.1%
Background Tree branch 16.3%
Shape Circle 1.0%
Eye color Yellow 7.7%

Stanford Cars
”a photo of a car”

Category Majority
Attribute

Majority
Proportion (%)

Body type Coupe 33.7%
Color Silver 26.5%
Condition Brand new 63.6%
Year 2010 43.5%
Size Mid-size 44.9%
Make/model Chevrolet corvette 13.5%
Lighting Natural sunlight 9.3%
Location Parking lot 30.1%
Features Object detection 0.0%
Surroundings Crowded parking lot 8.7%

Figure 4. Discovered confounding relationships between class
labels in CUB-200 and Stanford Cars and environmental at-
tributes generated by GELDA. (a.) Land versus water back-
ground bias in CUB-200. Bird species known generally as “water-
birds” (names in red) appear more often with water backgrounds.
(b.) Location bias in Stanford Cars. Luxury brands (names in red)
appear less often in “parking lots” or at “gas stations” compared
to “garages”.

and attributes, example annotations, and histograms in Sup-
plementary. Table 2 presents a summary of the generated
categories and their associated attributes with the highest
frequencies. There are several attributes our method reports
as having high occurrences that are not labeled in the orig-

inal datasets. For example, over 35% of images in Deep-
Fashion contain minimalist-style clothing items, over 35%
of images in CUB-200 contain a bird perching on a tree
branch, and over 60% of images in Stanford cars contain a
brand-new car. There are generally many uneven attribute
distributions within categories.

We also demonstrate using GELDA to reveal confound-
ing biases in these datasets, i.e., correlations between at-
tribute pairs. We combined the existing classification la-
bels from CUB-200 and Stanford Cars with annotations of
the bird habitats and car locations generated by GELDA,
resulting in an analysis presented in Fig. 4. For CUB-200,
waterbirds (a bird species known to live on or around water)
appear more often in this dataset with water-related environ-
ments (e.g. “coastal” or “wetland” habitats), consistent with
observations from prior work [42]. In Stanford Cars, luxury
brands (costing more than $70K) such as Bugatti or Ferrari,
appear less often in parking lots or gas stations.

4.4. Discovering biases of generative image models

We next demonstrate using GELDA to evaluate biases of
image generation models using the synthetic datasets SD
Living Rooms, SG2 Faces, and SG2 Dogs. We show exam-
ple attributes and annotations in the bottom row of Fig. 5.
We provide a full list of generated categories, attributes, and
example annotations in Supplementary.

We plot a histogram of generated attributes for SD Liv-
ing Rooms in Fig. 6. Several categories have uneven at-
tribute distributions. For example, over 90% of generated
living rooms contain a coffee table, sofa, area rug, or throw
pillows. Furthermore, less than 10% contain wall sconces,
bookshelves, blinds, shutters, or shades. The majority of
living rooms also have an “eclectic” layout, a “neutral”
color scheme,” a “Bohemian” or “Scandinavian” style, and
a “cozy and rustic” ambiance. BLIP struggles to annotate
generated flooring attributes, with the majority of images
receiving a higher score for the base caption.

Next, we analyze differences in attribute distributions
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Figure 5. Visual samples with annotations produced GELDA. The attribute names were generated automatically by the LLM (GPT),
and the assignment of images to labels was produced by VLMs (BLIP and OWLv2). Attributes determined to be object-level are shown in
images with red bounding box detections. Attribute names have been shortened for brevity.

Figure 6. Distribution of annotated attributes returned by GELDA for the SD Living Room (synthetic) dataset. Bars are grouped
by attribute categories in different colors, and attribute names have been shortened for brevity. Category corresponds with attributes
determined to be object-level. Certain attributes are prominent in the generated images, such as coffee tables and sofas for furniture, throw
pillows and area rugs for accessories, neutral and monochromatic hues for color schemes, and Bohemian and Scandinavian styles.

between StyleGAN2 generators and their training distribu-
tions (FFHQ and AFHQ-Dogs datasets). We show the dif-
ferences in attribute frequencies computed by GELDA in
Fig. 7. The analysis demonstrates SG2 amplifies bias –for
both SG2 Faces and SG2 Dogs, the majority attribute per
category in the training dataset almost always has an ex-
acerbated majority in the generated dataset. This is shown
in the plot as a negative difference (i.e. higher frequency
in the generated dataset) for several of the first attributes

in each category (the attributes are sorted in order of de-
scending frequency in the training dataset). For example,
in SG2 Faces, over 10% more images contain a smiling fa-
cial expression, fair skin tone, brunette hair color, middle-
aged appearance, hazel eye color, and stubble facial hair in
comparison to its corresponding training dataset. For SG2
Dogs, over 20% more images contain a dog with an “alert”
posture and over 10% more contain a medium-sized dog in
comparison to its training dataset.
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Figure 7. Comparisons of attribute bias of synthetic Style-
GAN2 (SG2) image generators with respect to their training
distributions. (a.) SG2 Faces vs. FFHQ. (b.) SG2 Dogs vs.
AFHQ. The attributes are ordered from top to bottom in each cat-
egory by descending frequency in the training dataset. SG2 am-
plifies bias – the most popular attributes in the training dataset
for each category have an even greater majority in the generated
dataset, as seen by large negative differences. Category corre-
sponds with attributes determined to be object-level.

5. Discussion and Conclusion

We propose GELDA, the first semi-automated framework
leveraging the power of large language and vision-language
models to suggest and annotate attributes for dataset bias
analysis. Experimental results demonstrate that GPT can
successfully suggest most attributes already labeled in real
datasets, while also suggesting new ones that lead to bias
discoveries. The VLMs (BLIP and OWLv2) also perform
well, though BLIP struggled with certain image-level at-
tributes like styles (e.g., “Bohemian”) and color schemes
(e.g., “triadic”). However, as shown in Supplementary,
these attributes also have high levels of inter-annotator dis-
agreement, meaning they are difficult even for humans to
judge. These findings lead to the insight that GPT should
not just be evaluated in isolation in terms of generated at-
tribute coverage, but also in terms of how well its attributes
may be confidently labeled without confusion. A future di-
rection is to develop methods to constrain GPT to do so.

Evaluation of image generation algorithms, particularly

large text-to-image models, is drawing interest in the vision
community. Given that a model like Stable Diffusion can
generate any image distribution describable by text, it is de-
sirable to also develop analysis algorithms like GELDA that
are equally flexible. Results demonstrate that Stable Dif-
fusion can skew color schemes, accessories, and furniture
when generating “a photo of a living room.” Such insight
can help practitioners engineer their prompts to steer away
from unwanted biased attributes. Results also demonstrate
that GELDA can measure bias amplifications of a gener-
ator with respect to its training distribution, such as with
StyleGAN2-produced faces and dogs.

GELDA has several limitations. First, it is only as good
as its constituent LLM and VLMs, which have their own
systematic errors and biases. While VLMs have improved
tremendously in the past several years, they are still far from
perfect on high-level semantics beyond object recognition.
In addition, GPT fails to recall a number of attributes an-
notated in the real datasets. The combination of these er-
rors indicates that a method like GELDA cannot simply re-
place humans in an annotation pipeline in terms of attribute
coverage or annotation accuracy. Instead, GELDA will be
most useful as a fast, flexible, and automated tool to per-
form coarse dataset analysis, complementing existing an-
notations. Second, our current implementation selects one
image-level attribute per category for an image (multiclass
classification), though an image can contain multiple at-
tributes together (e.g. clothing items can both be formal and
minimalist, or living rooms can have both monochromatic
and neutral color schemes). Third, we evaluated GELDA
on datasets with “contained” domains focusing on one type
of scene/object. Datasets with complex natural scenes like
MS-COCO [29] would pose challenges in attribute gener-
ation (a compact prompt cannot describe arbitrary natural
scenes) and image-level attribute annotations (object-level
annotations should be relatively unharmed).

5.1. Ethics and responsible use

GELDA inherits the biases of its LLM/VLM models, which
are themselves trained on potentially biased data distribu-
tions. Biases of the LLM will mainly result in missed at-
tribute categories which, while undesirable, are not as prob-
lematic as VLM biases. VLM biases can result in incorrect
annotations, thereby skewing dataset analyses. These in-
accuracies may be particularly harmful when dealing with
human-centered datasets like faces for which these mod-
els are not tuned for. A user should therefore always exer-
cise caution and visually inspect image annotation results to
confirm reasonable labels and understand the limitations of
the VLMs. We recommend using GELDA not as a replace-
ment to human perceptual ground truth, but as an efficient,
flexible, and low-cost method to complement human anno-
tation in dataset bias benchmarking.
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Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebastian
Riedel. Language models as knowledge bases? In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473. Association for Computational
Linguistics, 2019. 2, 3

[37] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion mod-
els for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023. 2, 4

[38] Jean Ponce, Tamara L Berg, Mark Everingham, David A
Forsyth, Martial Hebert, Svetlana Lazebnik, Marcin Marsza-
lek, Cordelia Schmid, Bryan C Russell, Antonio Torralba,
et al. Dataset issues in object recognition. In Toward
category-level object recognition, pages 29–48. Springer,
2006. 1, 2

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2, 3

[40] Vikram V Ramaswamy, Sunnie SY Kim, and Olga Rus-
sakovsky. Fair attribute classification through latent space
de-biasing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9301–9310,
2021. 2

[41] Google People + AI Research. Know your data. https:
//knowyourdata.withgoogle.com/, 2021. 2

[42] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and
Percy Liang. Distributionally robust neural networks. In In-
ternational Conference on Learning Representations, 2020.
6

[43] Gunnar A Sigurdsson, Olga Russakovsky, and Abhinav
Gupta. What actions are needed for understanding human
actions in videos? In Proceedings of the IEEE international
conference on computer vision, pages 2137–2146, 2017. 2

[44] Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne
Tuytelaars. A deeper look at dataset bias. Domain adaptation
in computer vision applications, pages 37–55, 2017. 2

10

https://knowyourdata.withgoogle.com/
https://knowyourdata.withgoogle.com/


[45] Antonio Torralba and Alexei A Efros. Unbiased look at
dataset bias. In CVPR 2011, pages 1521–1528. IEEE, 2011.
2

[46] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. Technical report, California Institute of Technology,
2011. 1, 2, 4

[47] Angelina Wang and Olga Russakovsky. Directional bias am-
plification. In International Conference on Machine Learn-
ing, pages 10882–10893. PMLR, 2021. 2

[48] Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman,
Leslie Kim, Dora Zhao, Iroha Shirai, Arvind Narayanan, and
Olga Russakovsky. Revise: A tool for measuring and miti-
gating bias in visual datasets. International Journal of Com-
puter Vision, 130(7):1790–1810, 2022. 2

[49] Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li,
Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Lijuan Wang.
GIT: A generative image-to-text transformer for vision and
language. Transactions on Machine Learning Research,
2022. 2

[50] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large lan-
guage models. Advances in Neural Information Processing
Systems, 35:24824–24837, 2022. 3, 4

[51] Kaiyu Yang, Klint Qinami, Li Fei-Fei, Jia Deng, and Olga
Russakovsky. Towards fairer datasets: Filtering and balanc-
ing the distribution of the people subtree in the imagenet hi-
erarchy. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pages 547–558, 2020. 1, 2

[52] Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel
Jin, Chris Callison-Burch, and Mark Yatskar. Language
in a bottle: Language model guided concept bottlenecks
for interpretable image classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19187–19197, 2023. 2, 3

[53] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mo-
jtaba Seyedhosseini, and Yonghui Wu. Coca: Contrastive
captioners are image-text foundation models. Transactions
on Machine Learning Research, 2022. 2

[54] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang,
Boxin Li, Chunyuan Li, et al. Florence: A new
foundation model for computer vision. arXiv preprint
arXiv:2111.11432, 2021. 1, 2

[55] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cyn-
thia Dwork. Learning fair representations. In International
conference on machine learning, pages 325–333. PMLR,
2013. 1

[56] Renrui Zhang, Xiangfei Hu, Bohao Li, Siyuan Huang, Han-
qiu Deng, Yu Qiao, Peng Gao, and Hongsheng Li. Prompt,
generate, then cache: Cascade of foundation models makes
strong few-shot learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15211–15222, 2023. 3

[57] Dominik Zietlow, Michael Lohaus, Guha Balakrishnan,
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GELDA:
A generative language annotation framework to reveal visual biases in datasets

Supplementary Material

A. Attribute generations with GPT
We access GPT using the OpenAI Python API1. For all experiments, we use model version gpt-3.5-turbo-1106 and
use temperature τ = 0.3. For category and example attribute generations using prompt queries Q1 and Q2, we append the
queries with the requests “Output the categories in one Python list” and “Output the examples in one Python list” respectively.
We heuristically find that this produces generations with consistent output templates that can be parsed automatically.

Table S1 contains a list of prompt templates used to describe noun-attribute relationship phrases. Table S2 and S3 contain
summarized lists of all generated categories, attributes, and image- or object-level decisions, as well as prompt templates
used for experiments in Sec. 4.3 and Sec. 4.4 respectively.

B. Extended results for VLM performance
B.1. Evaluation of VLMs on real dataset annotations

We show extended results for BLIP and OWLv2 attribute annotation performance on the CelebA, DeepFashion, and CUB-
200 datasets. Table S4 details a full account of the AUC score for each attribute in CelebA and DeepFashion, and Table S5
details the average AUC score for each attribute category in CUB-200.

B.2. Human evaluation of GELDA annotations

We recruit 12 unique annotators from our work environment and collect annotations using Labelbox Annotate2. We curate a
subset of images from the DeepFashion, CUB-200, Stanford Cars, and SD Living Rooms datasets. For each image, annotators
are asked to select all attributes that best describe the image with respect to the specified category (e.g., “Bohemian” for style
in DeepFashion). Annotators are allowed to select more than one attribute, and we provide an “unknown” label for instances
in which the annotator believes no attribute adequately describes the image. The final human annotation for an image is
determined using the consensus (majority) attribute. For images where the consensus attribute is the “unknown” label, we
select the attribute with the next highest annotation count if available (else we leave as “unknown”).

Table S6 contains a summary of the human annotations collected for all the datasets used. We observe that there is
a higher percentage of images with no consensus attribute obtained for DeepFashion style and SD Living Rooms color
scheme, demonstrating the difficulty for humans to label these attributes. Fig. S1 visualizes examples of images where there
is a disagreement between human and BLIP annotations.

C. Extended results for GELDA
Fig. S2 plots histograms of generated attributes for all the datasets used in Sec. 4.3. Fig. S3, S4, S5, S6, S7, and S8 visualize
attribute annotations for images across all datasets used in Sec. 4.3 and Sec. 4.4.

1https://github.com/openai/openai-python
2https://labelbox.com/product/annotate/
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Table S1. Prompt templates corresponding to a noun-attribute relationship phrase. Each row details the verb or preposition used to
establish the noun-attribute relationship and the corresponding prompt template. noun, attr, and category correspond with the noun
describing the image domain, generated attribute, and generated category respectively.

Verb/Preposition Template
is a attr noun
has a noun has attr category
with a noun with attr
in a noun in attr
from a noun from attr

Table S2. Attributes generated by GPT for real datasets. We detail the generated attributes used in experiments from Sec. 4.3. The
template column corresponds with the prompt template from Table S1 used to convert the attributes into a text caption. In instances where
GPT generates attributes that are already in a caption-like form or the attributes are determined to be object-level, we do not use a prompt
template. Category corresponds with attributes determined to be object-level.

Dataset Category Template Attributes

D
ee

pF
as

hi
on

“a
ph

ot
o

of
a

cl
ot

hi
ng

ite
m

”

Material is “silk”, “leather”, “cotton”, “denim”, “wool”
Fit with “loose fit”, “oversized fit”, “slim fit”, “tailored fit”, “athletic fit”
Style with “bohemian style”, “vintage style”, “streetwear style”, “formal style”, “minimalist style”
Pattern with “striped pattern”, “floral pattern”, “polka dot pattern”, “animal print pattern”, “plaid pattern”
Sleeve length with “sleeveless”, “short sleeve”, “long sleeve”, “cap sleeve”, “three-quarter sleeve”
Color is “red”, “yellow”, “blue”, “black”, “white”
Embellishments - “embroidery”, “sequins”, “beads”, “lace”, “appliqué”
Neckline with “v-neckline”, “halter neckline”, “boat neckline”,“off-the-shoulder neckline”, “crew neckline”
Brand/logo with “gucci logo”, “adidas logo”, “nike logo”, “polo ralph lauren logo”, “levi’s logo”
Type of clothing item - “skirt”, “jacket”, “pants”, “dress”, “t-shirt”

C
U

B
-2

00
“a

ph
ot

o
of

a
bi

rd
”

Habitat in “forest habitat”, “wetland habitat”, “desert habitat”, “coastal habitat”, “urban habitat”
Plumage pattern has “solid-colored”, “striped”, “spotted”, “mottled”, “barred”
Color is “yellow”, “blue”, “orange”, “green”, “red”
Size is “small”, “medium-sized”, “large”, “tiny”, “gigantic”
Wing shape has “rounded wings”, “pointed wings”, “broad wings”, “slender wings”, “elongated wings”
Species is “american robin”, “great horned owl”, “bald eagle”, “blue jay”, “sparrow”
Perching behavior - “bird perched on a statue”, “bird perched on a fence”, “bird perched on a rooftop”, “bird perched

on a tree branch”, “bird perched on a power line”
Background scenery - “a photo of a bird with a clear blue sky as the background scenery”, “a photo of a bird perched on

a tree branch with lush green foliage as the background scenery”, “a photo of a bird flying above
a field of colorful wildflowers as the background scenery”, “a photo of a bird standing on a rock
with a serene lake as the background scenery”, “a photo of a bird standing on a rocky cliff with a
vast ocean as the background scenery”

Shape has “square”, “circle”, “triangle”, “pentagon”, “diamond”
Eye color has “yellow eyes”, “red eyes”, “blue eyes”, “green eyes”, “brown eyes”

St
an

fo
rd

C
ar

s
“a

ph
ot

o
of

a
ca

r”

Body type - “sedan”, “convertible”, “SUV”, “hatchback”, “coupe”
Color is “blue”, “red”, “black”, “white”, “silver”
Condition is “vintage”, “brand new”, “damaged”, “restored”, “rusty”
Year from “1965”, “2010”, “2021”, “2012”, “2020”
Size - “small car”, “compact car”, “mid-size car”, “SUV”, “full-size car”
Make/model - “ford mustang”, “bmw 3 series”, “toyota camry”, “honda civic”, “chevrolet corvette”
Lighting in “natural sunlight”, “spotlight”, “soft lighting”, “dramatic low-key lighting”, “neon lighting”
Location - “a photo of a car in a parking lot”, “a photo of a car on a city street”, “a photo of a car in a garage”,

“a photo of a car on a highway”, “a photo of a car at a gas station”
Features - “color histogram”, “object detection”, “texture analysis”, “shape features”, “edge detection”
Surroundings - “a photo of a car parked in a busy city street”, “a photo of a car surrounded by palm trees on a

tropical beach”, “a photo of a car driving on a winding mountain road”, “a photo of a car in a
crowded parking lot”, “a photo of a car parked in a suburban driveway”
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Table S3. Attributes generated by GPT for synthetic datasets. We detail the generated attributes used in experiments from Sec. 4.4.
The template column corresponds with the prompt template from Table S1 used to convert the attributes into a text caption. In instances
where GPT generates attributes that are already in a caption-like form or the attributes are determined to be object-level, we do not use a
prompt template. Category corresponds with attributes determined to be object-level.

Dataset Category Template Attributes

SD
L

iv
in

g
R

oo
m

s
“a

ph
ot

o
of

a
liv

in
g

ro
om

”

Layout with “symmetrical layout”, “eclectic layout”, “grid layout”, “minimalist layout”, “open layout”
Wall decor - “framed artwork or paintings”, “wall clocks”, “gallery wall with a collection of framed photos or

prints”, “wall-mounted shelves with decorative items or plants”, “wall mirrors”
Flooring with “hardwood flooring”, “laminate flooring”, “carpet flooring”, “tile flooring”, “vinyl flooring”
Lighting - “chandelier hanging from the ceiling”, “recessed ceiling lights”, “table lamp on a side table”,

“wall sconces on either side of the fireplace”, “floor lamp next to a cozy armchair”
Furniture - “tv stand”, “armchair”, “coffee table”, “bookshelf”, “sofa”
Accessories - “wall art”, “throw pillows”, “area rugs”, “table lamps”, “decorative vases”
Color scheme with “complementary color scheme”, “monochromatic color scheme”, “analogous color scheme”, “tri-

adic color scheme”, “neutral color scheme”
Window treatments - “curtains”, “valances”, “shades”, “blinds”, “shutters”
Style with “industrial style”, “bohemian style”, “traditional style”, “scandinavian style”, “minimalist style”
Overall ambiance is “elegant and luxurious”, “modern and minimalist”, “bright and airy”, “cozy and rustic”, “cozy

and warm”

SG
2

Fa
ce

s
“a

he
ad

sh
ot

ph
ot

o
of

a
pe

rs
on

”

Glasses - “reading glasses”, “safety glasses”, “sunglasses”, “fashion glasses”, “eyeglasses”
Gender is “genderqueer”, “female”, “non-binary”, “male”, “transgender”
Facial expression has “neutral”, “smiling”, “frowning”, “serious”, “surprised”
Skin tone with “medium skin tone”, “dark skin tone”, “olive skin tone”, “light skin tone”, “fair skin tone”
Ethnicity is “african American”, “caucasian”, “asian”, “middle eastern”, “hispanic/latino”
Hair color with “blonde hair”, “brunette hair”, “red hair”, “gray hair”, “black hair”
Age is “middle-aged”, “child”, “teenager”, “young”, “senior”
Eye color has “blue eyes”, “hazel eyes”, “green eyes”, “gray eyes”, “brown eyes”
Hairstyle with “pixie cut”, “bald head, “mohawk”, “bangs”, “long wavy hair”
Facial hair with “clean-shaven”, “goatee”, “full beard”, “stubble”, “mustache”

SG
2

D
og

s
“a

ph
ot

o
of

a
do

g”

Color is “black”, “white”, “golden”, “brown”, “spotted”
Size is “giant”, “tiny”, “medium-sized”, “small”, “large”
Posture with “upright posture”, “playful posture”, “sitting posture”, “alert posture”, “lying down posture”
Breed is “labrador retriever”, “poodle”, “golden retriever”, “bulldog”, “german shepherd”
Tail shape has “straight tail”, “bushy tail”, “docked tail”, “sickle-shaped tail”, “curled tail”
Ear shape with “floppy ears”, “folded ears”, “pointed ears”, “pricked ears”, “button ears”
Fur length with “long fur”, “short fur”, “shaggy fur”, “medium fur”, “curly fur”
Environment - “a photo of a dog playing in a lush green park”, “a photo of a dog walking on a sandy beach with

crashing waves in the background”, “a photo of a dog swimming in a crystal-clear lake”, “a photo
of a dog sitting in a snowy forest during winter”, “a photo of a dog exploring a colorful flower
garden”

Eye color has “green eyes”, “hazel eyes”, “amber eyes”, “brown eyes”, “blue eyes”
Paw size with “large paw size”, “extra-large paw size”, “small paw size”, “medium paw size”, “extra-small paw

size”
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Table S4. VLM performances on ground-truth attribute labels from DeepFashion and CelebA. Numbers are AUC across all attributes
in the dataset. We observe good performance (> 0.7) of BLIP and OWLv2 across the majority of attributes.

Dataset Attribute BLIP OWLv2

DeepFashion

Floral 0.80 0.84
Graphic 0.76 0.61
Striped 0.94 0.90
Embroidered 0.69 0.55
Pleated 0.71 0.65
Solid 0.69 0.35
Lattice 0.64 0.68
Long sleeve 0.91 0.96
Short sleeve 0.92 0.93
Sleeveless 0.87 0.67
Maxi length 0.94 0.82
Mini length 0.81 0.49
No dress 0.48 0.24
Crew neckline 0.70 0.58
V-neckline 0.66 0.61
Square neckline 0.86 0.44
No neckline 0.60 0.46
Denim 0.93 0.83
Chiffon 0.86 0.74
Cotton 0.59 0.44
Leather 0.92 0.89
Faux 0.93 0.74
Knit 0.87 0.83
Tight 0.82 0.43
Loose 0.75 0.54
Conventional 0.53 0.58

CelebA

5 o’clock shadow 0.33 0.87
Arched eyebrows 0.61 0.68
Attractive 0.77 0.42
Bags under eyes 0.34 0.36
Bald 0.97 0.96
Bangs 0.90 0.79
Bip lips 0.60 0.61
Big nose 0.43 0.53
Black hair 0.92 0.69
Blond hair 0.96 0.91
Blurry 0.73 0.62
Brown hair 0.83 0.69
Bushy eyebrows 0.71 0.70
Chubby 0.60 0.61
Double chin 0.66 0.80
Eyeglasses 0.99 0.99
Goatee 0.90 0.97
Gray hair 0.94 0.90
Heavy makeup 0.83 0.75
High cheekbones 0.25 0.44
Male 0.99 0.97
Mouth slightly open 0.56 0.57
Mustache 0.80 0.92
Narrow eyes 0.42 0.32
Beard 0.72 0.95
Oval face 0.58 0.52
Pale skin 0.74 0.58
Pointy nose 0.47 0.42
Receding hairline 0.62 0.67
Rosy cheeks 0.68 0.51
Sideburns 0.89 0.83
Smiling 0.96 0.54
Straight hair 0.70 0.45
Wavy hair 0.91 0.78
Wearing earrings 0.91 0.91
Wearing hat 0.97 0.96
Wearing lipstick 0.90 0.92
Wearing necklace 0.81 0.75
Wearing necktie 0.90 0.94
Young 0.88 0.39
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Table S5. VLM performances on ground-truth attribute labels from CUB-200. Numbers are average AUC scores over attributes from
each category. In general, we observe good performance (> 0.7) of BLIP and OWLv2 for color categories. Furthermore, performance on
attributes localized to a single bird part (e.g., wing or tail) is significantly worse.

Attribute BLIP OWLv2
Primary color 0.79 0.71
Upperparts color 0.74 0.72
Underparts color 0.78 0.76
Upper tail color 0.71 0.66
Breast color 0.78 0.69
Belly color 0.77 0.71
Back color 0.77 0.70
Bill color 0.65 0.65
Leg color 0.63 0.67
Forehead color 0.77 0.71
Wing color 0.73 0.66
Eye color 0.58 0.64
Nape color 0.78 0.68
Crown color 0.79 0.74
Under tail color 0.72 0.64
Throat color 0.76 0.67
Head pattern 0.58 0.56
Breast pattern 0.59 0.57
Belly pattern 0.57 0.58
Back pattern 0.60 0.58
Wing pattern 0.60 0.55
Tail pattern 0.58 0.55
Shape 0.65 0.68
Size 0.68 0.68
Bill length 0.55 0.55
Bill shape 0.60 0.57
Wing shape 0.54 0.55
Tail shape 0.55 0.53

Table S6. Human annotation experiment statistics. Nimages corresponds to the total number of images annotated from the dataset.
Nannotations corresponds to the average number of attribute annotations collected per image in the dataset. “Unknown” corresponds to
the percentage of images in which at least one annotator assigned the “unknown” label to an image. “No consensus” corresponds to the
percentage of images that do not have a consensus attribute.

Dataset
(Attribute)

DeepFashion
(Style)

CUB-200
(Habitat)

Stanford Cars
(Location)

SD Living Rooms
(Color scheme)

Nimages 250 231 250 348
Nannotations 2.1 3.0 2.0 1.8
Unknown 4.8% 23.4% 10.0% 0.3%
No consensus 33.6% 16.5% 12.6% 28.4%
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Figure S1. Visual samples of disagreement between human and BLIP (VLM) annotations. Each row per grid corresponds to three
randomly selected images determined by a human to contain an attribute that does not match the BLIP annotated attribute. Rows with
less than three images correspond with all images in the dataset that have an annotated attribute disagreement (i.e. rows with no images
correspond with no disagreements). The corresponding human annotation is given to the left of each row and BLIP annotation below each
image. Attribute names have been shortened for brevity.
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Figure S2. Distribution of annotated attributes returned by GELDA for real datasets. (a.) DeepFashion, (b.) CUB-200, (c.) Stanford
Cars. Bars are grouped by attribute categories in different colors, and attribute names have been shortened for brevity. Category corresponds
with attributes determined to be object-level.
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Figure S3. Visual samples with annotations produced by GELDA for DeepFashion. Each row per grid corresponds to four randomly
selected images containing the specified attribute from a category. Rows with less than four images correspond with all images in the dataset
determined to contain the attribute. Attribute names have been shortened for brevity. Category corresponds with attributes determined to
be object-level, and are also shown in images with red bounding box detections.

Figure S4. Visual samples with annotations produced by GELDA for CUB-200. Each row per grid corresponds to four randomly
selected images containing the specified attribute from a category. Rows with less than four images correspond with all images in the dataset
determined to contain the attribute. Attribute names have been shortened for brevity. Category corresponds with attributes determined to
be object-level, and are also shown in images with red bounding box detections.
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Figure S5. Visual samples with annotations produced by GELDA for Stanford Cars. Each row per grid corresponds to four randomly
selected images containing the specified attribute from a category. Rows with less than four images correspond with all images in the
dataset determined to contain the attribute (i.e. rows with no images correspond with no annotations). Attribute names have been shortened
for brevity. Category corresponds with attributes determined to be object-level, and are also shown in images with red bounding box
detections.

Figure S6. Visual samples with annotations produced by GELDA for SD Living Rooms. Each row per grid corresponds to four
randomly selected images containing the specified attribute from a category. Rows with less than four images correspond with all images
in the dataset determined to contain the attribute (i.e. rows with no images correspond with no annotations). Attribute names have been
shortened for brevity. Category corresponds with attributes determined to be object-level, and are also shown in images with red bounding
box detections.
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Figure S7. Visual samples with annotations produced by GELDA for SG2 Faces. Each row per grid corresponds to four randomly
selected images containing the specified attribute from a category. Rows with less than four images correspond with all images in the dataset
determined to contain the attribute. Attribute names have been shortened for brevity. Category corresponds with attributes determined to
be object-level, and are also shown in images with red bounding box detections.

Figure S8. Visual samples with annotations produced by GELDA for SG2 Dogs. Each row per grid corresponds to four randomly
selected images containing the specified attribute from a category. Rows with less than four images correspond with all images in the
dataset determined to contain the attribute (i.e. rows with no images correspond with no annotations). Attribute names have been shortened
for brevity. Category corresponds with attributes determined to be object-level, and are also shown in images with red bounding box
detections.
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