
A Survey on Facial Feature Detection Methods and Their Application for
Automatic Lip Reading

Calvin Chang Krish Kabra Amit Mondal
Satvik Anand

{calvinchang33, krish97, amitmondal, satvik29} @g.ucla.edu

University of California, Los Angeles
Los Angeles, CA 90095

Abstract

Facial feature detection (FFD) is an important task used
in a multitude of applications including facial recognition,
animation, expression analysis, and 3D modelling. In this
report, we survey 6 well-established FFD methods: active
shape models, active appearance models, active contour
models (ACM), localized region-based ACM, supervised de-
scent fitters, and ensemble of regression trees. We utilize the
LFPW and 300-W IBUG facial databases to train our mod-
els, as well as to qualitatively and quantitatively analyze
model performance. Finally, we show an example appli-
cation of FFD to the automatic lip reading task using two
deep learning frameworks: a feature-only network and an
end-to-end network.

Contents

1. Introduction 1

2. Facial Feature Detection Methods 2
2.1. Active Shape Models 3

2.1.1 Implementation 3
2.1.2 Performance 3
2.1.3 Examples 3

2.2. Active Appearance Models 4
2.2.1 Implementation 4
2.2.2 Performance 4
2.2.3 Examples 4

2.3. Active Contour Models 5
2.3.1 Implementation 5
2.3.2 Performance 5
2.3.3 Examples 5

2.4. Localized Region-Based Active Contour
Models 5
2.4.1 Implementation 5
2.4.2 Performance 6

2.4.3 Examples 6
2.5. Supervised Descent Method 6

2.5.1 Implementation 6
2.5.2 Performance 7
2.5.3 Examples 7

2.6. Ensemble of Regression Trees (Dlib) 8
2.6.1 Implementation 8
2.6.2 Performance 9
2.6.3 Examples 9

2.7. Discussion 10

3. Application for Automatic Lip Reading 10
3.1. Feature-based approach 10
3.2. End-to-end approach 10
3.3. Results . 11

4. Conclusion 11

1. Introduction
Automatic facial recognition and analysis is a core topic

in computer vision. Crucial to this field is the important
task of facial feature detection (FFD), which is the pro-
cess of finding semantic features on a given 2D image of a
face. These features typically consist important facial com-
ponents such as the eyes, mouth, nose and chin. Detecting
and tracking these features over time enables applications
including head pose estimation [1], facial expression analy-
sis [2], facial recognition [3], facial animation [4], 3D facial
modelling [5] and visual speech recognition [6, 7].

Typically, FFD consists of learning the location of fa-
cial fiducial points through supervised or semi-supervised
training on manually labelled images containing the fixed
feature point annotations. Depending on various applica-
tions, different numbers of facial feature points are labeled
as, for example, a 21-point model [8], 29-point model [9]
or 68-point model [10]. Such point detection methods are
distinct from the feature detection methods used in image

1

registration, image stitching, and object recognition appli-
cations [11, 12, 13, 14, 15], where general key points are
identified using image-specific features such as edges, cor-
ners, blobs and ridges. Alternatively to point-based method,
FFD can compromise of learning bounding boxes [16] and
then using segmentation methods to more accurately extract
the facial component [17, 18, 19].

Facial feature point detection (FFPD), also known as
facial landmark or facial fiducial point detection, can be
separated into 2 categories: generative and discriminative
methods. Generative methods build an object template,
and then iteratively deform the template to the input image.
Such methods include active shape models (ASM) [20], ac-
tive appearance models (AAM) [21], and constrained local
models (CLM) [22]. Discriminative methods learn to sepa-
rate the object from the background through a binary clas-
sification of the image pixels. Among such methods, cas-
caded regression models (CRM) have gained widespread
popularity due to its excellent performance and low com-
plexity [23, 24, 25]. Deep learning approaches have also
been proposed with the rise in publicly available labelled
databases [26, 27].

FFD using bounding boxes and segmentation is not
as common as FFPD. Nevertheless, previous works have
typically used variants of active contour models (ACM)
[28], also known as snakes, to segment facial features
[17, 18, 29]. Bounding boxes are used to initialize the
snakes with simple shapes such as ellipsoids for the mouth
and eyes, and triangles for the nose.

In this report, we survey and comparatively analyze the
following FFD methods:

• Active Shape Model (ASM) [20]
• Active Appearance Model (AAM) [21]
• Active Contour Models (ACM) [28]
• Localized Region-Based ACM (LACM) [30]
• Supervised Descent Method (SDM) [23]
• Ensemble of Regression Trees (ERT) [24]
In order to train and evaluate the FFD methods, we

utilize the LFPW and 300-W IBUG facial point annota-
tions databases [10, 31, 32]. The ground truth facial point
annotations follow the Multi-PIE 68-points mark-up [33],
and were created by using a semi-automatic methodology
[31] followed by additional manual correction. The LFPW
database consists of 1,432 faces [9], whereas the 300-W
database consists of 300 Indoor and 300 Outdoor in-the-
wild images. Both databases downloaded images from the
web using simple text queries on sites such as google.com,
flickr.com, and yahoo.com.

Finally, to show an example application of FFD, we im-
plement two deep learning frameworks for the task of auto-
matic lip reading (ALR) using tracked visual facial features.
ALR is extremely challenging— for context, human level
accuracy is atrociously poor with lip reading performance

metrics of 17± 11% for monosyllabic words and 21± 12%
for compound words, from word banks of 30 [34]. One rea-
son for this is because of human inability to visually extract
the difference in consonant phonemes like ”p” and ”b” [35].
More over, in the absence of context, discerning and differ-
entiating the difference in lip, teeth and tongue movements
contributes to the resulting poor human performance [30].
Without a doubt, there is a need for an automated process
for lip reading. ALR performed by machines will impact
applications such as hearing aids, silent dictation in public
spaces, security, speech recognition in noisy environments,
biometric identification, and silent-movie processing [36].

ALR is approached by various flavors, but most typi-
cally follows a common suit of first learning visual fea-
tures and then performing speech prediction. The first ALR
systems mainly consist of image transforms or appearance-
based features combined with hidden markov models that
use short context information to model the temporal dy-
namics of the speech sequences [37]. However, these sys-
tems could only tackle simple recognition tasks such as al-
phabet or digit recognition. The recent rise in deep learn-
ing (DL) architectures in combination with the availability
of large-scale databases has enabled systems to undertake
more complex and realistic settings leading to systems that
target continuous lip-reading [7].

For this report, we follow suit of using DL to per-
form ALR on single word utterances. We use two frame-
works: a feature-only based network and an end-to-end net-
work. The feature-only network serves as a simple proof-
of-concept that FFD can directly be used for ALR. We feed
the sequence of facial feature coordinates tracked during the
video utterance directly into a bi-directional recurrent neu-
ral network (RNN) [38]. The end-to-end network used is
based on the well-established LipNet architecture [36] that
feeds cropped video frames of the mouth obtained using
FFD. The network is modified to predict words as opposed
to original sentence-level task. We utilize 20 word utter-
ances from the lip reading in the wild (LRW) video database
for model training and evaluation [39]. Due to time and
computational resource limitations, we only use facial fea-
tures tracked using the ERT method due to its high accuracy
and speed. We show both models can adequately learn to
classify the word utterances.

2. Facial Feature Detection Methods
In this section, we qualitatively and quantitatively com-

pare the various facial feature tracking methods we evalu-
ated in this project. For each method, we will include a
brief overview of how it works, describe secondary charac-
teristics of the model (runtime performance, amount of data
needed to train), show examples of facial features extracted,
and show accuracy measurements.

To calculate accuracy for our methods, we use a standard

2

Figure 1. Example of poor ASM performance. Error from variance
in depth and non-uniform lighting. Blue (right) is initialization and
red (left) is final fit.

Euclidean distance measure:

F(s, s∗) =
1

N

N∑
i=1

√
(si,x − s∗i,x)2 − (si,y − s∗i,y)2 (1)

where s and s∗ are the final and ground truth shapes, re-
spectively. (si,x, si,y) represents the ith shape in the final
image, and (s∗i,x, s

∗
i,y) represents the ith shape in the ground

truth image. Ideally, we could normalize this value by di-
viding it by some quantity proportional to the size of the
ground truth’s bounding box, since without this normaliza-
tion, larger images will inherently have a larger error simply
because points are further apart. However, because some of
the models used in this project don’t support this normalized
measure, we simply use standard Euclidean distance. For-
tunately, because we are testing all the models on the same
dataset, LFPW, this shouldn’t cause any issues for compar-
ison purposes. To generate an accuracy score, we calculate
the above score for every image in the test set of LFPW, and
then take the max, min, and mean of these accuracy scores.

2.1. Active Shape Models

For facial feature tracking, ASM [20] is able to capture
fine detail and generalizes to a larger variation of shapes
compared to snakes. ASM in ALR, has shown relatively
positive results as an exhaustive approach for limited vari-
ation and small datasets. Fundamentally, ASM relies on
a priori knowledge about the deformation statistics of a la-
beled training set. In addition, ASM receives a performance
boost if the environment can be correctly predicted, mod-
eled or constrained.

Figure 2. Example of good ASM performance. Low error due to
features being in the same depth plane and uniform lighting. Blue
(right) is initialization and red (left) is final fit.

2.1.1 Implementation

The ASM implementation was done using a CLM in an
attempt to account and handle more variation [22]. CLM
achieves this by not only considering the shape model, but
also considering the response of each feature formulated
as patches about the features. Each patch constitutes an
image response, which are represented by holistic features
based on a gradient and are then fed into PCA to form a
linear model to learn from during training. During fitting
time, CLM performs a similar iterative approach as ASM
in which the model tries to maximize an objective func-
tion consisting of the image response and the log likelihood
given the shape parameters and eigenvalues [22].

2.1.2 Performance

This improved ASM model trains slow compared to the rest
of the surveyed models in this paper. Training on the LFPW
dataset consisting of 811 images, takes about 1 minute per
scale on an 8 core AMD 3700x. On average, it takes about
0.41 seconds to perform feature extraction from a single im-
age. Making this ASM method not viable to be tested in our
feature-only network given the time constraint.

In terms of accuracy for ASM, the minimum is 2.23, the
maximum is 1528, and the mean is 38. Note that the accu-
racy scores are created from an initialization based on Dlib’s
face detector.

2.1.3 Examples

Figure 1 is an example of how the improved ASM model
struggles to correctly fit images that have features lying in
different depth planes. In addition, the model tends to strug-
gle with complex scene lighting. This is most likely due to

3

Figure 3. AAM produces good results when given a close initial-
ization.

the fact LFPW lacks enough data given a particular change
in depth or lighting. In addition, the holistic features are
captured through a gradient, which can be heavily influ-
enced by changes in lighting intensities. One thing to note,
is that this method sometimes does a good job despite poor
initialization as seen in Figure 1. However, the model can-
not finish the job since it is not invariant to changes in depth
or lighting. Figure 2 results in a nearly optimal fit, because
the scene has low variance in feature depth and the lighting
is uniform throughout the scene.

2.2. Active Appearance Models

Although ASMs are relatively fast thanks to learning
eigenfaces through PCA, they are not as robust when new
images are introduced. As a result, ASMs may not converge
to a good solution, especially given the wide variation in hu-
man faces. AAMs [21] fix this by incorporating gray-level
information with the shape information into a single statis-
tical model. The result is a model with similar benefits to
ASMs, such as their speed, while also having better repre-
sentational power thanks to the addition of texture informa-
tion, which allows them to be more robust overall.

2.2.1 Implementation

The implementation of AAM used in this project uses a
holistic appearance representation obtained by warping the
texture into the reference frame with a non-linear warp
function. In this case, the reference frame is the mask of the
mean shape’s convex hull. The warp function is a piecewise
affine warp. The PCA appearance model has 1034 compo-
nents, and the PDM (point distribution model) shape model
has 132 components. We use the Lucas-Kanade gradient
descent image alignment algorithm for fitting the appear-
ance model to images.

2.2.2 Performance

As expected, the model was very quick to train, completing
the LFPW dataset in under 5 seconds on a 6-core Intel i7-

Figure 4. AAM can get tricked by misleading features when given
a bad initialization.

8750H. In addition, the model ran relatively quickly when
extracting images. On average, our AAM model took .08
seconds to extract features from a typical 500x800 image
from LFPW.

In terms of accuracy for AAM, the minimum is 2.67,
the maximum is 8294, and the mean is 427. Note that the
accuracy scores are created from an initialization based on
Dlib’s face detector.

2.2.3 Examples

Figure 3 shows a good initialization in blue, and the final
fitting result in red. As we can see, with a good initializa-
tion, our AAM performs very well, perfectly fitting the eye-
brows, nose, and lips. The eyes and chin are slightly off due
to shadows, but subjectively, the fitting result is perfectly
acceptable for our purposes.

Figure 4 shows a bad initialization in blue, initialized via
our facial detector, and the final fitting result in red. We can
see that if the initialization is shifted significantly, our AAM
detector can easily get ”tricked.” In this case, we see the

Figure 5. Even some fairly close initializations can produce bad
results. In this case, the AAM model is tricked by the texture in
the hair and the shadow behind the face.

4

AAM fitting the eye features to the subject’s eyebrows. In
addition, because the shadow at the bottom of the face hap-
pens to line up with the subject’s lip, the bottom of the face
mesh is aligned with the shadow and the mouth. Finally,
the mouth portion of the mesh is aligned with a shadow be-
tween the mouth and nose. We can see that for our purposes,
this AAM is not robust enough for use with our Dlib face
detector.

We provide one more example in Figure 5 to show that
even with a fairly close initialization, the AAM is still not
robust enough for our purposes. With this last initialization
in blue, we see that the boundaries of the face mesh almost
perfectly align with the subject’s actual face, and the eyes,
nose, and mouth are very close to their ideal final position.
Unfortunately the AAM seems to get confused by shadows
once again, and completely misaligns the eyebrows due to
the hair texture, and misses the left edge of the face due to
a shadow in the background.

2.3. Active Contour Models

The conventional ACM [28] algorithm contours objects
by making an initial closed curve deform via minimizing
a regional energy. Using ACM to extract lip contours for
ALR presents some challenges because of its performance
with uneven lighting and parameter initialization.

2.3.1 Implementation

The implementation of ACM used in this project first finds
edges on the image using a Sobel filter and then superim-
poses intensity and edge images. Then it interpolates the
image for smoothness and builds the snake shape matrix for
Euler equations by explicitly time-stepping and minimiz-
ing energy. One can set the parameters for contour length,
smoothness, attraction to brightness and darkness, distance
moved each iteration, boundary conditions and convergence
criteria.

2.3.2 Performance

The challenge of using ACM to detect the lip contours in
images is that one needs user input to initialize the parame-
ters of the active contour, which is unfeasible for training on
large datasets. With improper initialization the ACM tends
to get confused by uneven lighting and deformities around
the lip. It is challenging to select the right parameters that
cause the ACM to contour the lips. The ACM model took
between 1 and 2 seconds to extract the lip contour for most
of the images in the LFPW dataset with some outliers tak-
ing about 3-4 seconds. The time taken is affected by the
initialization parameters.

Figure 6. The red dotted line in these figures represents the ini-
tialization and the blue represents the final result. (b) has a better
result than (a) because of better initialization but both are still very
inaccurate.

2.3.3 Examples

In Figure 6a ACM’s initialization was very poor and we
weren’t able to get a good fit at all. The model got confused
by a shadow on the side of the person’s face. To counter
this, in Figure 6b, we changed the parameter that controls
attraction to darkness to avoid darkness and it seems to have
found a better fit but still gets confused by uneven lighting
on the face. We can observe that conventional ACM is not
robust enough for the ALR problem.

2.4. Localized Region-Based Active Contour Mod-
els

When images have heterogeneous or complex compo-
nents, LACM [30] are known to perform better than ACM
because they are able to separate the image into internal and
external components and ignore the information from the
external components in finding edges. Edge-based active
contours utilize image gradients to find object boundaries.
However LACM can be sensitive to noise and is, like ACM,
highly dependent on initial curve placement and is also sus-
ceptible to uneven lighting and deformities around the lips.

2.4.1 Implementation

The implementation of LACM is based on level sets that are
evolved iteratively to minimize an energy, which is defined
by weighted values corresponding to the sum of differences
in intensity from the average value outside the segmented
region and inside the segmented region and a term which is
dependent on the length of the boundary of the segmented
region. At each iteration you calculate new level set values

5

Figure 7. The original picture compared with the final level set
after applying LACM algorithm. Lip intensity is clearly differen-
tiated.

and compare it to the previous level set to see if minimiza-
tion should continue.

2.4.2 Performance

LACM is also dependent on the user initialization to get a
good approximation but performs better than ACM in most
cases. However, it can still get confused by uneven lighting
and lip deformities. The LACM implementation is compu-
tationally slower than ACM and takes between 5-8 sections
to calculate the final level set for all images in the LFPW
dataset.

2.4.3 Examples

In Figure 7, we can see what happens when the algorithm
manages to segment the different parts of the face effec-
tively. The lips are clearly contoured a different intensity
than the area surrounding the lips.

In Figure 8, basically no segmentation has taken place.
The final level set is considerably similar to the original im-
age. This is likely due to somewhat homogeneous intensi-
ties all across the image which leads to a mostly unchanged
level set.

2.5. Supervised Descent Method

SDM is a more recent method for extracting facial fea-
tures, introduced in 2013 [23]. Many computer vision prob-
lems, including facial alignment, can be viewed as solv-
ing some nonlinear optimization problem. For these types
of problems, Newton’s method is often chosen because of
its quadratic convergence rate and its guarantee to con-
verge. Newton’s method has the following update step:
xk+1 = xk −H−1(xk)Jf (xk), where H(xk) and Jf (xk)
are the Hessian and Jacobian evaluated at xk, respectively.
However, for computer vision problems, there are a few
challenges with this method. The Hessian might be posi-
tive definite at the minimum, but not elsewhere, so New-

Figure 8. The original picture compared with the final level set
after applying LACM algorithm. Lip intensity is almost identical
to original image.

ton method’s steps might not be taken in the descent direc-
tion. In addition, Newton’s method requires the function
to be twice differentiable. This can be expensive to esti-
mate, for example in the case of SIFT features, which are
non-differentiable [12]. Finally, the Hessian matrix can be
extremely large, and inverting it can be even more expen-
sive.

To solve these issues, SDM takes a different approach
to optimizing some nonlinear-least squares (NLS) function.
During training, SDM is given a set of functions f(x,yi),
where f(x) is a non-linear function of image features such
as SIFT, and yi represents different locations (people). For
each of these examples, the minima is known, and SDM
learns a series of parameter updates which incrementally
minimizes the mean of all NLS functions during training.
Each update consists of some sample-specific component
(e.g. yi), and some generic descent directions Rk. Dur-
ing fitting, given some unseen y, we can generate this up-
date by projecting y-specific components onto the learned
descent direction Rk. The NLS used for facial feature de-
tection is f(x0 + ∆x) = ‖h(d(x0 + ∆x)) − φ∗‖22, where
φ∗ = h(d(x0)) represents the SIFT feature values in the
manually labelled landmarks. φ∗ and ∆x are known in the
training images. A primary difference between SDM and
other models, such as AAM, is that AAMs only use one-
step regression, which have been shown to lower perfor-
mance.

2.5.1 Implementation

We used several implementations for this project. The first
version uses the non-parametric Newton algorithm and in-
cremental regularized linear regression (IRL regression).
We use 30 perturbations per shape, and only two scales
(0.5 and 1.0). For the first version, we use a 17x17 patch
extracted from the image, and don’t use any custom image
features. As we’ll show in the next section, this first version,
train solely on LFPW, did not perform particularly well.

6

Figure 9. Example using the first SDM model. Without sufficient
training data and regularization, SDM model overfits and can pro-
duce completely garbled results.

The second version has several major differences. First,
we use a regularized version of the SDM model, which
we’ll see is extremely important to prevent overfitting. Sec-
ond, we use a standard 128-length SIFT feature vector as
our patch feature. We use a 24x24 patch size, and we set
the regularization parameter α to 10.

The third version makes several slight changes. First, we
only use 3 perturbations per shape. Second, we use 4 scales
this time, two at 0.5 and two at 1.0. The two at scale 0.5
use 32x32 and 24x24 patches each, and the two at scale 1.0
use 24x24 and 16x16 patches each. Finally, we now use a
slightly modified Hellinger SIFT feature vector as our patch
feature. Hellinger is a more robust distance measure for
SIFT than standard Euclidean distance. As we will show,
adding in more scales while also using SIFT features and
training on a much larger data set leads to much improved
performance.

2.5.2 Performance

SDM is notable because it took significantly longer to train
than prior methods, such as AAM. On the same 6-core i7
CPU we used in the AAM training, it took our first version
of SDM about 11 minutes to finish training on LFPW, which
is several orders of magnitude longer than our AAM ver-
sion. This makes sense, since SDM is doing significantly
more processing per image, and the computations are no
longer as simple as PCA. Keep in mind that this is the per-
formance of our simpler version of SDM, which does not
use SIFT, and only uses 2 scales. This version of SDM
was extremely fast for actually performing feature extrac-
tion, taking about .01 seconds to extract features from the
same typical 500x800 image from LFPW. We can see that
SDM is very expensive to train, but has impressive perfor-
mance for testing.

Our second version of SDM described above, with larger
patches and SIFT features, took about half an hour to train
on LFPW. We can see that adding in a custom feature de-
scriptor for patches significantly increases training time.

Figure 10. Good example using the second SDM model. With
regularization, the model can produce good results as long as it is
given a good initialization

Figure 11. Poor example using the second SDM model. Even with
regularization, the model is still not robust to bad initialization.
More data and more scales are needed to improve model perfor-
mance.

For our best-performing SDM model, the minimum is
1.36, the maximum is 403, and the mean is 19.9. Note that
the accuracy scores are created from an initialization based
on Dlib’s face detector. We can see that this model per-
forms significantly better than our AAM model, which had
a mean error of 426, which is worse than our SDM model’s
maximum error.

2.5.3 Examples

In Figure 9, we can see an example of the first iteration of
our SDM model. The initialization, seen in blue, is provided
by Dlib’s face detector. We can see it is shifted upwards
slightly from the correct position, but is relatively close to
the true features. However, in red, we can see that the final
fitting result is basically a garbled mess. It is possible that
a better initialization would have produced a better fitting
result, but when we actually use this model we must accept
whatever initialization that our face detector gives us. In this
case, it is not clear what exactly the model is trying to fit.
Because of the dramatic improvements that regularization
give us, we can say with a fair amount of confidence that
this initial model has overfit. In short, this initial SDM has

7

Figure 12. Example using the third SDM model. With regulariza-
tion and sufficient training data, SDM has excellent performance.

unacceptable performance.
In Figure 10, we see our second SDM model is greatly

improved. With a good initialization, it is able to produce
an excellent fitting result that almost perfectly matches the
true features. It is slightly thrown off by the sheen on the
left cheek, but overall the fitting result is excellent. How-
ever, a bad initialization is enough to produce an unaccept-
able fitting result. In Figure 11, we use a shifted and tilted
initialization for this fitting, and we can see that the final fit-
ting result matches almost none of the actual features. The
model is completely thrown off by inconsistent lighting and
the bad initialization, and produces an unacceptable fitting
result. Thus, with our second SDM model the performance
has improved dramatically, It is now somewhat similar to
our AAM model, where a good initialization can produce
excellent fitting results but a bad initialization can ”trick”
the model into fitting to shadows or other misleading image
features. Given that we have trained this model on the same
amount of data, it is clear that the image patch features and
the regularization are responsible for the improvement. This
model is much better, and better than many of the prior ap-
pearance and shape models, but still needs to be improved
before we can use it in our deep learning model.

Figure 12 shows an example from our third SDM model,
which has 4 scales, is regularized, and uses the Hellinger
SIFT feature vector. It is also trained on significantly more
data than only LFPW. We can see that even when given a
similar initialization to our first example, where the face
mesh is offset vertically, we end up with a nearly perfect fit-
ting result. It is clear that regularization, adjusted features,
and significantly more data can make SDM a very accu-
rate facial feature extraction model. This final SDM model
has good enough performance for use in the deep learning
model.

2.6. Ensemble of Regression Trees (Dlib)

The newest feature detection method we tried is ERT, in-
troduced in 2014 [24]. Much like SDM, ERT is a cascaded
regression method that attempts to improve over prior fa-
cial feature detection methods in some novel way. There

are several important issues in feature extraction that ERT
builds on prior methods to solve.

The first is that the extracted facial features in the vec-
tor representation of a face image can vary greatly due to
different facial lighting conditions. This makes estimating
the shape from these features difficult, and conversely, we
need an accurate estimation of the shape to extract accurate
features. Rather than regressing shape parameters based on
features extracted in the global coordinate system of the im-
age, the image is transformed to some normalized coordi-
nate system based on the current shape estimate, and then
features are extracted to produce an update vector for the
shape parameters. This iterative update procedure (similar
to an EM algorithm) is repeated until convergence.

The second issue is that estimating the shape (a high-
dimensional vector) is a non-linear problem with many lo-
cal minima. To reduce the number of shapes considered
during inference and avoid local optima, we assume that
the estimated shape must lie in some linear subspace. This
subspace can be discovered by finding the principal com-
ponents of the training shapes, for example. The authors
exploit the fact that a certain class of regressors are guaran-
teed to produce predictions that lie in a linear subspace de-
fined by training shapes, so there is no need for additional
constraints.

Each regressor in the cascade is learned via gradient
boosting with a squared-error loss function. We let S =
(xT

1 ,x
T
2 , ...x

T
P) be the coordinates of our facial landmarks

in our image I . Our current estimate of S is Ŝ(t). We
compute an update for the estimate like so: Ŝ(t+1) =
Ŝ(t) + rt(I, Ŝ

(t)), where rt(.) is one regressor in the cas-
cade. Each regressor makes its predictions based on fea-
tures from the image, I , indexed relative to the current es-
timate Ŝ(t). As the cascade proceeds, we can be more cer-
tain that a precise semantic meaning on the face is being
indexed. There are many more details that contribute to the
relative speed and accuracy of the ERT method, such as how
splits in each decision tree are computed, and how each re-
gressor is trained, but they would take too long to cover in
this report.

2.6.1 Implementation

We use two implementations for this project. Both utilize
the Dlib image processing library. The first is Dlib’s pre-
trained model. This model uses a cascade depth of 10, a
tree depth of 4, 500 trees per cascade level, and a feature
pool size of 400. It also has an oversampling amount of
20 for regularization. As you might expect, a deeper tree
depth leads to a potentially more accurate regressor, but it is
slower during prediction time. In addition, a deeper cascade
depth can also lead to a much more accurate predictor, but
it also creates a much larger output model.

8

Figure 13. The pre-trained ERT model has excellent performance
on a wide variety of faces, even with very different lighting condi-
tions

The second implementation uses the same Dlib ERT
model, but is trained from scratch on the 300-W large
dataset. Importantly, we have modified it so that it only tries
to fit the mouth. Our motivation for a lip-only model is for
faster feature extraction, and more accurate lip matching,
since the model no longer has to worry about matching the
rest of the facial features. We increased the cascade depth
to 15, and decreased the oversampling amount to 5 for less
regularization. We also added a small amount of oversam-
pling translation jitter, in order to apply some translation
augmentation during training. These changes were made
to compensate for a smaller training set than whatever the
pre-trained model used.

2.6.2 Performance

ERT was designed with the goal of having extremely fast
detection, so it is no surprise that the performance of both
models is excellent. On average, extracting facial features

Figure 14. The mouth-only ERT model is also quite robust, despite
the face detector providing less accurate initializations.

Figure 15. There are cases for which the full-face ERT model per-
forms better than the mouth-only ERT model, potentially because
of the more accurate initialization for the full-face model as well
as there being fewer false positives for the whole face.

from a typical 500x800 LFPW image took about .001-.002
seconds on the same 6-core i7 CPU used for the AAM and
SDM tests. This is an order of magnitude faster than even
SDM. Presumably, if we reduced the tree depth even further,
the performance would be even better. Fitting time on the
lip-only detector was more or less identical.

Since Dlib does not give us the minimum or maximum
error values, we can only compare the mean error. Our
mouth-only model has an error of 11.03. This is slightly
better than our SDM model, but the more noticeable differ-
ence comes with the full-face model, which has an error of
only 6.32. This performance gap can be explained by the
fact that the added context of other facial features can pre-
vent the model from fitting to misleading image features.

2.6.3 Examples

We can see from Figure 13 fitting result that the Dlib pre-
trained ERT produces a nearly perfect fitting result. Just as
for the prior models, the initialization is provided by Dlib’s
frontal face detector, although we no longer show the ini-
tial bounding box. This ERT detector is extremely robust,
and even a wide variety of lighting conditions and faces, we
could not produce a bad fitting result. From our testing, it is
clear that the Dlib detector is both fast and accurate enough
for use in the deep learning model.

The mouth-only detector generally has excellent perfor-
mance, and in nearly every example image we tested was
able to very closely match the subject’s lips (see Figure
14). In theory, using the lip-only points in the deep learning
model should be better, since the model won’t get confused
and try to learn from features like the nose, which do not
affect speech.

For a few examples, like the one shown Figure 15a, we
can see that the mouth-only detector gets confused. In this
case, it is likely because the subject is making an exagger-

9

ated frown, which combined with his facial hair has created
lots of shadows and misleading features beneath the mouth.
As a result, the model has found a mouths-shaped wrinkle
on the subject’s chin.

Somewhat surprisingly, even though the mouth-only
model was unable to correctly fit the subject’s mouth, the
whole-face model was able to perfectly outline the lips (see
Figure 15). Although this could simply be a side-effect of
the pre-trained model using more data, it is also likely that
the whole-face model has a regularizing effect on the fitting
result. When we try to only fit the mouth, our model may
get confused by anything in the entire image that looks like
a mouth, as in the above example. However, our whole-
face model knows that in general, eyebrows must come
above eyes, which must be above a nose, which is above
a mouth. In other words, the whole-face model has con-
text and knows the relative locations of each facial feature,
making it more difficult to fit misleading image features.

2.7. Discussion

A comparison of the FFPD methods can be seen in Ta-
ble 2.6.3. SDM and ERT are far and away the most ac-
curate feature extraction methods. The accuracy for these
two methods is orders of magnitude better than the older
methods, though this is to be expected given how expensive
they are to train and how much data they require to produce
good results. Although the two have comparable accuracy,
ERT still has better accuracy overall, and has the additional
benefit of noticeably better performance. Although it is pos-
sible that this is influenced by a difference in their underly-
ing implementations, Dlib’s ERT implementation is the best
candidate for our deep learning model for its fast extraction
time and great accuracy. Unsurprisingly, we see a direct cor-
relation between training time and model accuracy. Models
like AAM were extremely quick to train and could produce
good results even when trained on very little data, as long
as a good initialization is provided. However, models like
SDM and ERT are evidently more complex, as they require
lots more data to provide reasonable results, and take much
more time to train. However, once fully trained they are
able to produce excellent results even when given a poor
initialization. Furthermore, there seems to be a tradeoff be-
tween time spent training, and time spent during feature ex-
traction, Again, ERT and SDM are much faster during fea-
ture extraction than the older models, despite taking much
longer at training time.

The performance of both ACM and LACM suffered from
requiring user input for initialization. It is challenging to
select optimal parameters such that the lip outline is con-
toured. In addition, both models get confused by uneven
lighting and deformities around the lips. Hence, both ACM
and LACM without further pre-processing or other means
of optimization are intractable for facial feature tracking

and recognition.

3. Application for Automatic Lip Reading
In this section, we show a direct application of FFD for

ARL of word utterances. We describe two DL frameworks:
a feature-based approach and an end-to-end approach. Both
models utilize FFD in order to pre-process video frames of
the word utterances. Due to limited time and computational
resources, we only utilize the ERT method outlined in Sec-
tion 2.6 due to its high speed and accuracy. All models were
implemented using Torch.

In order to train and evaluate the models, we utilize
the LRW video database [39]. The database contains over
400,000 videos of 500 word utterances from over 1000 dif-
ferent speakers collected from BBC channels. Each video is
fixed to be 29 frames in length with the word spoken in the
middle of the segment. The database is already separated
into training, validation and testing sets, following a split of
approximately 1000/50/50 videos for each word. Due to the
vast size of the database and our limited time and computa-
tional resources, we selected 20 words out of the 500 to use,
which can be seen in Figure 18 and 19.

3.1. Feature-based approach

In order to show a simple and direct application of FFD
for the ARL task, we design a simple deep learning model
that utilizes a bi-directional RNN-LSTM [40]. An overview
of the system pipeline is shown in Figure 16, and archi-
tecture hyperparameters are given Table 2. The 68-point
coordinates from each video frame are extracted and nor-
malized by fixing the central nose point (point 31 in Multi-
PIE annotation scheme) as the axis origin. A categorical
cross-entropy loss is used to train the model as a multi-
classification problem for the 20 word utterances. Dropout
rate of p = 0.25 and an L2-regularization coefficient of
λ = 10−6 are used during training with batch sizes of 128.
We used the optimizer Adam [41] with a learning rate of
10−4, and the default hyperparameters: a first-moment mo-
mentum coefficient of 0.9, a second-moment momentum
coefficient of 0.999, and the numerical stability parameter
ε = 10−8. Training was done for a total of 100 epochs, and
the learning rate was decayed by 0.1 on the plateau of the
validation loss.

3.2. End-to-end approach

State-of-the-art solutions for the ARL task utilize an end-
to-end DL architecture, where the video is directly placed
into the pipeline. One of the first successful end-to-end
approaches to tackle the sentence-level task and surpass
human-expert performance was LipNet [36]. We imple-
ment LipNet with a few minor modifications: batch normal-
ization layers [42] are added after each convolutional lay-
ers, and the CTC loss is replaced with a categorical cross-

10

Method # of Landmarks Error (Mean Euclidean Distance) Computation Time (s)
ASM (CLM) 68 38.4 334.0

AAM 68 427 113.6
SDM 68 19.9 11.04

ERT (mouth only) 19 11.03 29.5
ERT (whole face) 68 6.32 6.32

Table 1. Comparison of FFPD methods using the LFPW database test set.

Figure 16. Feature-only network architecture. 68-point coordi-
nates from each video frame are extracted using FFD, normalized
by fixing the central nose point (point 31 in Multi-PIE annotation
scheme) as the axis origin, and flattened into a single dimension.
The sequence of coordinates are then fed into a 2-layer Bi-LSTM.
The weights from the final Bi-LSTM layer are then concatenated
and processed by a linear layer and a softmax. This model is
trained with categorical cross-entropy loss.

entropy loss as single words are predicted as opposed to sen-
tence sequences. An overview of the pipeline is shown in
Figure 17. Detected mouth feature points from the video are
used to extract a mouth-centred crop of size 100×50 pixels
per frame, which are then fed into the model. Dropout rate
of p = 0.5 and an L2-regularization coefficient of λ = 10−6

are used during training with batch sizes of 64. The opti-
mizer Adam is used with a learning rate of 10−4, and the
default hyperparameters: a first-moment momentum coef-
ficient of 0.9, a second-moment momentum coefficient of
0.999, and the numerical stability parameter ε = 10−8.
Training was done for a total of 100 epochs, and the learn-
ing rate was decayed by 0.1 on the plateau of the validation
loss.

3.3. Results

The results for the models are shown as a confusion
matrices in Figure 18 and 19. The feature-based model
manages to achieve an overall testing accuracy 72.1% is

Layer Hidden Input Dimension
Bi-LSTM 512 29× (68× 2) T × (F × 2)
Bi-LSTM 512 29× 512 T ×H

Linear 20 (512× 2) (H × 2)
Softmax 20 K

Table 2. Facial feature network architecture hyperparameters. T is
the number of frames, F is the number of facial feature points, H
is the hidden dimension size, and K is the number of word labels.

Figure 17. LipNet architecture. A sequence of T mouth-centered
crop frames is used as input to a 3-layer spatio-temporal convo-
lutional neural network (STCNN), where each layer is followed
by batch normalization, ReLU activation and spatial max-pooling
layers. The features extracted from the STCNN are then processed
by 2 Bi-GRUs. The final time-step of the GRU output is then pro-
cessed by a linear layer and a softmax. This end-to-end model is
trained with categorical cross-entropy loss.

achieved, while the end-to-end model manages to achieve
an overall testing accuracy of 90.3%. The superior perfor-
mance of LipNet is attributed to the fact that the network
can learn both visual and temporal features together from
the video frames directly as opposed to only learning tem-
poral features in the feature-based approach.

4. Conclusion
In this report, we have surveyed 6 FFD techniques, of

which the 4 FFPD methods have be quantitatively compared
using the LFPW database test set. We find that the discrima-
tive CRM methods SDM and ERT perform orders of magni-
tude better than the generative deformable model methods
ASM and AAM, both in terms of accuracy and computa-
tion time. Nevertheless, ASM and AAM are able to obtain
adequate results with fast training time and good initializa-
tion. However, ASM remained the slowest during feature
extraction time. The snake based FFD methods discussed
were shown to struggle with uneven lighting, lip deformi-
ties, long computation times, and user input for initializa-
tion, making them unsuitable for the task of mouth or lip
recognition and segmentation.

Finally, we have shown a successful application of FFD
for the task of ARL using 2 separate DL approaches. We
show that a simple facial feature-only network can learn to
classify 20 words adequately, and that an end-to-end net-
work can achieve over 90% accuracy. In the future, we
propose that a multi-modal fusion network could be used

11

to join the facial feature-only and end-to-end to networks.
A possible benefit of such an architecture is enabling the
use of a deeper STCNN in the end-to-end network, which
previously suffers from overfitting.

Figure 18. Confusion matrix results for facial feature-only net-
work.

Figure 19. Confusion matrix results for LipNet.

References
[1] E. Murphy-Chutorian and M. M. Trivedi, “Head pose esti-

mation in computer vision: A survey,” IEEE transactions
on pattern analysis and machine intelligence, vol. 31, no. 4,
pp. 607–626, 2008.

[2] Y.-L. Tian, T. Kanade, and J. F. Cohn, “Facial expression
analysis,” in Handbook of face recognition, pp. 247–275,
Springer, 2005.

[3] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld,
“Face recognition: A literature survey,” ACM Comput. Surv.,
vol. 35, p. 399–458, Dec. 2003.

[4] T. Weise, S. Bouaziz, H. Li, and M. Pauly, “Realtime
performance-based facial animation,” ACM Trans. Graph.,
vol. 30, July 2011.

[5] V. Blanz and T. Vetter, “A morphable model for the synthe-
sis of 3d faces,” in Proceedings of the 26th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’99, (USA), p. 187–194, ACM Press/Addison-
Wesley Publishing Co., 1999.

[6] I. Matthews, T. F. Cootes, J. A. Bangham, S. Cox, and
R. Harvey, “Extraction of visual features for lipreading,”
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 24, no. 2, pp. 198–213, 2002.

[7] A. Fernandez-Lopez and F. M. Sukno, “Survey on automatic
lip-reading in the era of deep learning,” Image and Vision
Computing, vol. 78, pp. 53–72, 2018.

[8] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof, “An-
notated facial landmarks in the wild: A large-scale, real-
world database for facial landmark localization,” in 2011
IEEE international conference on computer vision work-
shops (ICCV workshops), pp. 2144–2151, IEEE, 2011.

[9] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Ku-
mar, “Localizing parts of faces using a consensus of exem-
plars,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 12, pp. 2930–2940, 2013.

[10] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic,
“300 faces in-the-wild challenge: The first facial landmark
localization challenge,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops, pp. 397–
403, 2013.

[11] C. Tomasi and T. Kanade, “Detection and tracking of point
features,” tech. rep., International Journal of Computer Vi-
sion, 1991.

[12] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, p. 91–110, Nov.
2004.

[13] Li Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of
object categories,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 28, no. 4, pp. 594–611, 2006.

[14] V. Lepetit and P. Fua, “Keypoint recognition using random-
ized trees,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 28, no. 9, pp. 1465–1479, 2006.

[15] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast
keypoint recognition using random ferns,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 32,
p. 448—461, March 2010.

[16] P. I. Wilson and J. Fernandez, “Facial feature detection using
haar classifiers,” J. Comput. Sci. Coll., vol. 21, p. 127–133,
Apr. 2006.

12

[17] H. Wu, T. Yokoyama, D. Pramadihanto, and M. Yachida,
“Face and facial feature extraction from color image,” in Pro-
ceedings of the Second International Conference on Auto-
matic Face and Gesture Recognition, pp. 345–350, 1996.

[18] A. Nikolaidis and I. Pitas, “Facial feature extraction and
pose determination,” Pattern Recognition, vol. 33, no. 11,
pp. 1783 – 1791, 2000.

[19] U. Saeed and J.-L. Dugelay, “Combining edge detection and
region segmentation for lip contour extraction,” in Artic-
ulated Motion and Deformable Objects (F. J. Perales and
R. B. Fisher, eds.), (Berlin, Heidelberg), pp. 11–20, Springer
Berlin Heidelberg, 2010.

[20] T. F. Cootes and C. J. Taylor, “Active shape models—‘smart
snakes’,” in BMVC92, pp. 266–275, Springer, 1992.

[21] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appear-
ance models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 6, pp. 681–685, 2001.

[22] D. Cristinacce and T. F. Cootes, “Feature detection and track-
ing with constrained local models.,” in Bmvc, vol. 1, p. 3,
Citeseer, 2006.

[23] X. Xiong and F. De la Torre, “Supervised descent method
and its applications to face alignment,” in Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 532–539, 2013.

[24] V. Kazemi and J. Sullivan, “One millisecond face alignment
with an ensemble of regression trees,” in Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 1867–1874, 2014.

[25] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by ex-
plicit shape regression,” International Journal of Computer
Vision, vol. 107, no. 2, pp. 177–190, 2014.

[26] Y. Sun, X. Wang, and X. Tang, “Deep convolutional net-
work cascade for facial point detection,” in Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pp. 3476–3483, 2013.

[27] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark
detection by deep multi-task learning,” in Computer Vision
– ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuyte-
laars, eds.), (Cham), pp. 94–108, Springer International Pub-
lishing, 2014.

[28] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active
contour models,” International journal of computer vision,
vol. 1, no. 4, pp. 321–331, 1988.

[29] K. Sobottka and I. Pitas, “Segmentation and tracking of faces
in color images,” in Proceedings of the Second International
Conference on Automatic Face and Gesture Recognition,
pp. 236–241, 1996.

[30] X. Liu and Y. Cheung, “A robust lip tracking algorithm us-
ing localized color active contours and deformable models,”
pp. 1197–1200, 2011.

[31] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic,
“A semi-automatic methodology for facial landmark annota-
tion,” in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition workshops, pp. 896–903, 2013.

[32] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou,
and M. Pantic, “300 faces in-the-wild challenge: Database
and results,” Image and vision computing, vol. 47, pp. 3–18,
2016.

[33] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker,
“Multi-pie,” Image and Vision Computing, vol. 28, no. 5,
pp. 807 – 813, 2010. Best of Automatic Face and Gesture
Recognition 2008.

[34] R. Easton and M. Basala, “Perceptual dominance during
lipreading,” Perception Psychophysics, vol. 32, pp. 562–
570, 11 1982.

[35] C. G. Fisher, “Confusions among visually perceived conso-
nants,” Journal of Speech and Hearing Research, vol. 11,
no. 4, pp. 796–804, 1968.

[36] Y. M. Assael, B. Shillingford, S. Whiteson, and N. de Freitas,
“Lipnet: End-to-end sentence-level lipreading,” 2016.

[37] J. Luettin, N. A. Thacker, and S. W. Beet, “Visual speech
recognition using active shape models and hidden markov
models,” vol. 2, pp. 817–820 vol. 2, 1996.

[38] M. Schuster and K. K. Paliwal, “Bidirectional recurrent
neural networks,” IEEE Transactions on Signal Processing,
vol. 45, no. 11, pp. 2673–2681, 1997.

[39] J. S. Chung and A. Zisserman, “Lip reading in the wild,”
in Computer Vision – ACCV 2016 (S.-H. Lai, V. Lepetit,
K. Nishino, and Y. Sato, eds.), (Cham), pp. 87–103, Springer
International Publishing, 2017.

[40] A. Graves and J. Schmidhuber, “Framewise phoneme clas-
sification with bidirectional lstm networks,” in Proceedings.
2005 IEEE International Joint Conference on Neural Net-
works, 2005., vol. 4, pp. 2047–2052, IEEE, 2005.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[42] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
arXiv preprint arXiv:1502.03167, 2015.

13

